Packaging is an essential part of the pharmaceutical industry, given the sensitive nature of the contents. High-risk medications and lifesaving drugs need utmost care and protection until they reach the patient. As such, stringent industry standards apply to pharmaceutical packaging. Manufacturers give high priority to safety and quality while selecting packaging materials for a drug or healthcare product. The packaging should be able to act as a barrier against external contamination and chemical reactions. Exposure to reactive gases can alter the physical, chemical and biological attributes of the products. This makes Container Closure Integrity Testing of pharmaceutical packaging a regulatory requirement.
Role of MicroCurrent HVLD in ensuring pharmaceutical package integrity
Often referred to as the conductivity and capacitance test, High Voltage Leak Detection (HVLD) is a test method found to be highly effective in detecting the presence and location of leaks in a wide range of pharmaceutical and parenteral applications. It can be used for leak testing in nonporous, rigid or flexible packages, as well as packages containing liquid or semi-liquid products. High Voltage Leak Detection test is conducted using electrical conductivity and resistance principle. This method operates by passing high voltage micro current signals through sample packages. Under the presence of a leak, the electrical resistance of the sample declines, causing an increase in current. Compared to other leak detection methods that rely on flow of gas or liquid, HVLD technology relies on “flow” of current. This reduces challenges with defect clogging compared to flow-based analysis.
The latest evolution of HVLD, PTI’s patent pending MicroCurrent technology, aims to achieve a high level of CCI assurance across the entire range of pharmaceutical products. The MicroCurrent HVLD reduces voltage exposure to the product to less than 5% of the voltage exposure experienced when testing with comparable HVLD solutions. Reducing exposure voltage not only reduces any risk that the voltage poses to the product, but also greatly reduces the production of Ozone during operation when compared with traditional HVLD solutions. Ozone in the headspace of a container can be detrimental to the product, and in the operating environment can affect respiratory health.
Benefits:
Non-destructive Container Closure Integrity Test (CCIT)
Requires no sample preparation
Capability to test multiple packages in a single test cycle
Identifies which package is defective
Simplifies the inspection and validation process
Supports sustainable packaging initiatives
ASTM test method and FDA standard
Cost effective with rapid return on investment
hvld, package integrity testing, ccit, container closure integrity, microcurrent hvld
2666