Maintaining quality requirements and ensuring package integrity are important criteria for pharmaceutical product manufacturers. As such, the shift to more automated processes and digital measurement systems have systematically become a greater part of pharmaceutical manufacturing. In this blog, we will discuss automated package inspection techniques offered by PTI.
1. Vacuum Decay technology
Vacuum Decay technology is a non-destructive Container Closure Integrity Test (CCIT) used for leak detection in nonporous, rigid, or flexible packages. It is an ASTM-approved, FDA-recognized test method with proven capabilities to provide reliable, reproducible, repeatable and accurate quantitative results. This method involves drawing vacuum on the sample package kept in the test chamber and analyzing the vacuum level for any defect, indicating a leak.
Vacuum Decay technology is applicable across a wide range of pharmaceutical and medical devices with the capability of detecting leaks in single digit micron range while accommodating multiple packaging types. PTI has made further advancements in Vacuum Decay technology with its PERMA-VAC technology and VeriPac FLEX Series.
PERMA-VAC technology that addresses vacuum decay detection at the very core of physical test measurement, controlling the test system volume and maximizing the SNR between good and defective samples. It is a a single or dual vacuum transducer technology, which has higher test sensitivity for providing accurate and reliable results.
The VeriPac FLEX series, designed specifically for dry filled pouches and flexible packaging are available in several configurations with the ability to accommodate various package specifications. Each model achieves a specific range of test sensitivity and various test chamber sizes are available depending upon the package size and characteristics. The VeriPac FLEX series offer defect detection to the 10 to 20 micron range.
2. MicroCurrent HVLD Technology
PTI's MicroCurrent HVLD technology is a unique High Voltage Leak Detection Technology for container closure integrity testing. It is found to be highly effective across a wide range of high-risk pharmaceutical products and medical devices. When compared to traditional HVLD solutions, this method uses around 50% less voltage and exposes the product and environment to less than 5% of the voltage. Being a non-invasive technique it requires no sample preparation and has a high degree of reproducibility and accuracy throughout.
The Microcurrent HVLD test method can detect the presence and location of pinholes, micro-cracks, stopper/plunger leaks, non-visible leaks under crimping and many other defects. It assures product CCI by scanning a non-conductive sealed container with electrode probes. Any defect in the packaging results in resistance differential and change in current flow in the container as well as the approximate defect location.
Such automated platforms would provide the same 100% testing capability with an accurate inspection that includes quantitative test data and a pass/fail result. Proper sensory measurement requires time to capture a result. However, these new automated technologies can still reliably inspect containers at a much higher rate than was possible before, with a more sensitive leak detection capability.
CCIT, container closure integrity testing, package integrity testing, vacuum decay technology, HVLD technology
1962